Prescription Opioid Exposures and Outcomes among Older Adults

Benjamin W. Hatten1,2, Nancy A. West1, Stevan G. Severtson1, Jody L. Green1, Richard C. Dart1.
1Rocky Mountain Poison and Drug Center, Denver Health and Hospital Authority, Denver, CO; 2 Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO
Disclosure of Commercial Relationships

• Salary support provided by RMPDC
• RMPDC funding provided by RADARS program
 – Contracts with multiple pharmaceutical companies
 – RADARS owns the data
Background

- Toxic exposures leading cause of death
- Increased rx opioids -> increased misuse
- Little research on elderly
Methods

• Researched Abuse, Diversion and Addiction-Related Surveillance (RADARS®) System Poison Centers
 • Covers 70-93% of population
 • De-identified and transmitted for analysis
Methods

• Unintentional exposures
 – oxycodone, fentanyl, hydrocodone, morphine, oxymorphone, hydromorphone, tramadol, and tapentadol
• January 1, 2006-June 30, 2014
• Adults >19 years
 – Older (60 or greater)
 – Younger (20-59)
Methods

• Population
 – All calls
 – Serious outcomes
 • Death; major effect; moderate effect

• Analysis
 – Regressing rates on
 • age group
 • linear variable for time
 • age group by time interaction term

• Outcome: Trend in rate by age group
Results

- Both age groups showed initial increases then decrease
- Higher for older adults than for younger adults.
- Older adults began to decline later (early 2014) than younger adults (late 2010)
Results

• Per prescriptions dispensed higher among older adults than among younger adults.
• Prescriptions dispensed
 – to younger adults declined
 – to older adults continued to increase.
Results

• Rates of calls with serious outcomes increased for both groups
 – quarterly increases greater for older adults than for younger adults.
Results

<table>
<thead>
<tr>
<th>Rate</th>
<th>Age Group</th>
<th>Estimated rate at 2014Q2</th>
<th>Estimated slope at 2014Q2 (95% CI, p-value for slope)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population rate per 1,000,000</td>
<td>20-59</td>
<td>6.72</td>
<td>-0.1952(-0.2659 to -0.1244, p<0.001)</td>
</tr>
<tr>
<td></td>
<td>60 or more</td>
<td>14.08</td>
<td>-0.0094(-0.0802 to 0.0613, p=0.791)</td>
</tr>
<tr>
<td>Prescriptions rate per 100,000</td>
<td>20-59</td>
<td>2.87</td>
<td>-0.0589(-0.0892 to -0.0286, p<0.001)</td>
</tr>
<tr>
<td></td>
<td>60 or more</td>
<td>4.68</td>
<td>-0.0454(-0.0757 to -0.0151, p=0.004)</td>
</tr>
<tr>
<td>Prescriptions per population rate per 100</td>
<td>20-59</td>
<td>23.36</td>
<td>-0.2038(-0.3034 to -0.1041, p<0.001)</td>
</tr>
<tr>
<td></td>
<td>60 or more</td>
<td>29.90</td>
<td>0.1812(0.0815 to 0.2808, p<0.001)</td>
</tr>
</tbody>
</table>
All outcomes
Serious outcomes
Conclusions

• Unintentional exposures higher for older adults than younger adults.
 – rates have declined for both age groups
 – decline began earlier for younger adults

• rates of serious outcomes
 – increased for both age groups
 – greater among the 60+ group