How Low Can You Go:
Solving the Challenge of Low Volume Endorsements in the General Population

Joshua C. Black, Ph.D.
Rocky Mountain Poison & Drug Safety
Outline

• Background & Hypothesis: Detection of rare events
• Analytic Strategy
• Defining Two Epidemiological Paradigms with General Population Surveys
• Test-Retest Reliability as a Function of Dispensing
• Useful Information from the Signal Detection Paradigm
Objectives: Investigating Rare Endorsements

- Detecting new and low volume products in the general population can be framed as a rare outcome problem
- RADARS System General Population Survey:
 - Survey of Non-Medical Use of Prescription Drugs (NMURx) Program
- Assume:
 - Dispensing can be used as a measure of “rarity”
- Hypothesis:
 1. A relationship between dispensing and estimates can be used to validate surveillance of a product in the general population
Background

• Detection as function of prevalence modelled previously1

Smaller prevalence leads to lower sensitivity and precision. False positives starts to outweigh false negative.

1Brenner H, Gefeller O. "Variation of Sensitivity, Specificity, likelihood ratios, and predictive values with disease prevalence." Statistics in Medicine 1997; 16(9): 981-991
Analytic Strategy

• Truth of individual responses cannot be directly confirmed
 – Dispensing is a proxy for actual use

• Goals:
 – Quantify threshold in association of dispensing and use estimates (Part 1)
 – Demonstrate reliable estimates and association with dispensing (Part 2)
 – Explore qualitative analysis of rare behavior (Part 3)

• Joinpoint Regression\(^2\)
 – Past experience indicated a threshold relationship was likely
 – Disjointed linear regression; estimates “transition” points with CIs

\(^2\)Joinpoint Regression Program, Version 4.8.0.1 - April 2020; Statistical Methodology and Applications Branch, Surveillance Research Program, National Cancer Institute
Study Design Summary of the NMURx Program

- Setting: Online survey panel of general population
 - Digital distribution through commercial company
- Sample Size: 120,000 respondents
 - 4 launches to date: 3rd quarter 2018 to 1st quarter 2020
 - Average Completion Rate: 75.6%
- Key measure: Drug use (any medical or non-medical)
- Key adjustments:\(^3\):
 - Calibration weighting to address non-probability sampling
 - Careless response exclusion

Part 1: Threshold Function in Dispensing and Use Relationship
Threshold Identification
Methods

• Past experience indicated that API endorsements have lower limit
 – Lead us to using joinpoint method to quantify threshold
• Average past year prescriptions dispensed (IQVIA™) for active ingredients (independent x-axis)
• Estimated of number of adults who have used (dependent y-axis)
• Joinpoint
 – Identified best fit model between 0, 1, 2, 3, & 4 thresholds
 – Resampling to estimate threshold and CIs
 – Model on log-log scale
Threshold Identification
Results: Joinpoint Analysis

Results Summary:
• Visually, there appears to be a change in the association around 100,000 Rx dispensed
Threshold Identification

Results: Joinpoint Analysis

Results Summary:
- **Best model**
 - Single threshold
 - Better fit than 0, 2, 3 or 4 thresholds
- **Above threshold**
 - Significant linear association (log scale)
- **Below threshold**
 - No association (not significant)
- Suggests two different paradigms for investigation
Threshold Identification
Results: Extrapolation

Results Summary:
• Extrapolation
 • Intercepts near 1
 • Shows internal validity of model
• Imply estimates above the threshold are valid with respect to dispensing
Threshold Identification
Conclusions

• A single threshold demarcates two distinct epidemiological paradigms
 – Quantitative estimates: Statistically valid, generalizable estimates of use, within the context of the sampling frame
 – Signal detection: Not generalizable, but true positives still informative

• Dispensing can be used to guide which surveillance is best suited

• Limitations:
 – Uncertainty in dispensing not accounted for
 – Nonprobability sampling – Mitigated by calibration weights
Part 2: Reliability in the NMURx Program
Reliability in the NMURx Program
Study Design

- Re-contacted 1,844 respondents from 3rd quarter 2019
 - 789 retook survey (42.8% re-contact rate)
- Same questionnaire (Past year use question)
- 1-2 months after initial contact
- Drug class and individual drug reliability measures
 - Kappa: Modelled with joinpoint regression
 - Prevalence-adjusted, bias adjusted kappa (PABAK)
 - Overall, positive, and negative agreement
Reliability in the NMURx Program

Test-Retest Results: Drug Class

<table>
<thead>
<tr>
<th>Drug Class (Past Year Use)</th>
<th>Overall Agreement</th>
<th>Positive Agreement</th>
<th>Negative Agreement</th>
<th>Kappa</th>
<th>Prevalence Adjusted Bias Adjusted Kappa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pain Relievers</td>
<td>81.6%</td>
<td>83.9%</td>
<td>78.6%</td>
<td>0.63</td>
<td>0.63</td>
</tr>
<tr>
<td>Sedatives</td>
<td>81.7%</td>
<td>72.2%</td>
<td>86.4%</td>
<td>0.59</td>
<td>0.63</td>
</tr>
<tr>
<td>Stimulants</td>
<td>88.3%</td>
<td>59.6%</td>
<td>93.2%</td>
<td>0.53</td>
<td>0.77</td>
</tr>
<tr>
<td>Rx Cannabinoids</td>
<td>92.0%</td>
<td>40.0%</td>
<td>95.7%</td>
<td>0.36</td>
<td>0.84</td>
</tr>
</tbody>
</table>

- Overall agreement at the drug class level is good
- Adjustments to kappa needed to account for prevalence imbalance in the observational data
Reliability in the NMURx Program
Test-Retest Results: Individual Drugs

Results Summary:
• Results more diverse by API
 • Each horizontal line is 1 API
 • Ordered by positive agreement
• Vertical black line represents chance agreement
• Negative agreements mostly >80%
• Positive agreements lower, but more reliable than random chance
Results Summary:
- Each point is the kappa for one API
- Functional relationship similar to prevalence estimates
- Single threshold
- Inconclusive results due to several APIs with low sample size
 - Low sample size drives kappas toward zero
 - Biases the threshold estimate and confidence interval
Sensitivity Summary:

- Removed APIs in lower quartile of sample size
- Model performing better relative to actual data
 - Suggests low sample sizes perturbing model
- Threshold similar to prevalence vs dispensing threshold
 - 207,000 vs 241,000
Reliability in the NMURx Program
Conclusions

• Drug use questions demonstrate good reliability
 – Kappa estimates influenced by prevalence
• Single threshold also observed in reliability data
 – Also suggests two epidemiological paradigms
• Limitations:
 – Results only suggestive due to sample size
Part 3: Useful Information under the Signal Detection Paradigm
Opioid Injection Follow-up Survey: Pilot Study Design

• Signal detection paradigm can be used to study rare behaviors qualitatively

• Current Example: Investigate injection of opioid pills
 – Setting: Respondent re-contact via online portal
 – Sample: Respondents who reported abuse of an opioid pill in the past year
 – Unique questionnaire focused on relevant injection behavior
 – Delivered after each of 1st and 3rd quarter launches in 2019

• Respondents must confirm abuse behavior
Opioid Injection Follow-up Survey: Pilot Respondent Flow Chart

Invited to Follow-Up
N=207

Follow-Up Consent
N=56

Contradicted prior abuse answer:
n=6 (10.7% of those consented)

Completed Surveys
N=50

Careless Exclusion:
n=3 (6.0% of completes)

Other Ineligible:
n=2 (4.0% of completes)

Analytical Sample
n=45

No Injection History
n=16

Injection History >12 Mo
n=9

Injection History <12 Mo
n=20
We asked: “What lead you to inject the [opioid] pill? Tell us about your first experience”

It was exhilarating experience and I enjoyed it so. It was absolutely amazing. Feels good honestly

To get high

It was related to pains and other issues Much pain

Chronic pain Knee replace for pain To feel less pain

Out of 29 responses:
• 8 referred to pain
• 3 referred to a high experience
• 1 referred to drug switching
• 4 were uninformative
Opioid Injection Follow-up Survey: Pilot Results: Injection behavior in past year

<table>
<thead>
<tr>
<th>Most Frequently Used Ingredient</th>
<th>Frequency, n (%) (N=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxycodone</td>
<td>5 (25%)</td>
</tr>
<tr>
<td>Oxymorphone</td>
<td>5 (25%)</td>
</tr>
<tr>
<td>Hydrocodone</td>
<td>3 (15%)</td>
</tr>
<tr>
<td>Codeine</td>
<td>3 (15%)</td>
</tr>
<tr>
<td>Morphine</td>
<td>2 (10%)</td>
</tr>
<tr>
<td>Hydromorphone</td>
<td>1 (5%)</td>
</tr>
<tr>
<td>Tramadol</td>
<td>1 (5%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Injection Regularity</th>
<th>Frequency, n (%) (N=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Once a month or less often</td>
<td>8 (40%)</td>
</tr>
<tr>
<td>Once a week</td>
<td>8 (40%)</td>
</tr>
<tr>
<td>Once a day</td>
<td>2 (10%)</td>
</tr>
<tr>
<td>Multiple times a day</td>
<td>2 (10%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Typical Time Spent Preparing</th>
<th>Frequency, n (%) (N=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td><5 Minutes</td>
<td>6 (30%)</td>
</tr>
<tr>
<td>6 to 15 Minutes</td>
<td>9 (45%)</td>
</tr>
<tr>
<td>16 to 30 Minutes</td>
<td>4 (20%)</td>
</tr>
<tr>
<td>>6 hours</td>
<td>1 (5%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Needle Sharing</th>
<th>Frequency, n (%) (N=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No sharing</td>
<td>5 (25%)</td>
</tr>
<tr>
<td>1 person</td>
<td>9 (45%)</td>
</tr>
<tr>
<td>2+ people</td>
<td>6 (30%)</td>
</tr>
</tbody>
</table>

Results Summary:
- Diverse APIs
- Most injected once a week or less often
- Most spent 15 minutes or less preparing
- Most shared needles with at least one person

Narrative accounts can be combined with targeted questions to understand why and how people use products.
Opioid Injection Follow-up Survey: Pilot Conclusions

• Follow-up verifies endorsement
 – Limits false positive bias
• Allows narrative and close-ended question development
• Tailored questions can address emergent concerns (e.g., needle sharing)
• Limitations:
 – Rapid follow-up required
 – Might require waves of follow-up
Overall Conclusions
Overall Conclusions

• Identified a threshold to demarcate paradigms and inference frameworks using a general population survey
 – Above the threshold, estimates are valid, reliable, and representative of the population
 – Below the threshold, tailored questionnaires and qualitative analysis are informative of emergent behavior

• Use of an online panel can work within both paradigms using a single participant resource
Questions?

Joshua C. Black, Ph.D.
Joshua.black@rmpds.org