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New approaches are needed for epidemiologic

studies that will allow causal inference.
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Observation 1: Geographic Heterogeneity

Each drug has a unique geographic spectrum of per capita dispensing.
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Per Capita Dispensing of 15 Low Volume Opioids
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Per capita dispensing

Separating by level of dispensing, we can account for
the time trend in each tier, grouping together places
most similar in dispensing.
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Observation 2: Dispensing Tiers Over Time

High, medium and low tier dispensing locations for a given drug
have different shaped trajectories over time.
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Observation 3: Non-linearity

There is a Non-Linear Association Between Dispensing and Abuse
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A new method, Trend-in-Trend, is robust to
confounding from competing interventions by
looking at trends in smaller time units, while

simultaneously accounting for dispensing tiers.
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Seeing the Unseen

Borrowing a well-established concept from economics (instrumental variables [IV]), we can
calculate how much effect competing interventions might have on opioid abuse, even if we can'’t
directly quantify the interventions themselves.

This is different from “adjusting” for known interventions in a model, which would explain away the
observed variation. Instead, we are saying that competing interventions over time are important,
and quantifying the influence they might be asserting.
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Prescription opioid abuse changes over time through prescribing.

Ertefaie A et al. A tutorial on the use of instrumental variables in pharmacoepidemiology. PDS, 2017. doi:10.1002/pds.4158



Extension to the linear model

Expanding to the linear model framework, we have our marginal mean
L. defined below conditional on Z. (exposure), G (group /tier), and X.
which represents our unmeasured confounding at time t

w = E(|Z!.G. X{)

h() is the logit link function so we can evaluate the model as

h(i) =B, + Z!B, +1B, + Xy,
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Abstract

Purpose:  One response to the opioid crisis in the United States has been the devel-
opment of opioid analgesics with properties intended to reduce non-oral use. Previ-
ous evaluations of abuse in the community have relied on population averaged
interrupted time series Poisson models with utilization offsets. However, competing
interventions and secular trends complicate interpretation of time-series analyses.
An alternative research design, trend-in-trend, accounts for heterogeneity in per
capita opioid dispensing and unmeasured time-varying confounding, which provides
a causal evaluation, provided that underlying assumptions are met.

Methods:  Trend-in-trend can be modeled using a logistic regression framework. In
logistic regression, exposure was any product-specific outpatient dispensing by
three-digit ZIP code and calendar quarter, for 22 opioids. The outcome was any
product-specific abuse case ascertained from poison centers and drug treatment pro-
grams, covering 94% of the US population, between July 2009 and December 2016.
Product-specific odds ratios compared places without dispensing with places with any
dispensing; the causal contrast represents the odds of product-specific abuse in the

community given exposure.
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