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The Route to Utilization of Trend in 
Trend 



New approaches are needed for epidemiologic 
studies that will allow causal inference. 

2 



Bass-Krishnan-Jain Diffusion Model for New 
Consumer Goods 
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Source: Wikipedia 



Observation 1: Geographic Heterogeneity 
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Drug: Opana ER 
Time: 2009q3 – 2016q4 
Source: IQVIA 
N: 360,432,541 units dispensed 
Analysis unit: 3-digit ZIP 
Metric: cumulative population-adjusted rate 
 

Each drug has a unique geographic spectrum of per capita dispensing. 



Per Capita Dispensing of 15 Low Volume Opioids 
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Time: 2009q3 – 2016q4 
Visualization: Scaled sparklines 
Metric: Units dispensed per 1,000 people 
Source: IQVIA 
Analysis unit: 3-digit ZIP 



time 

Separating by level of dispensing, we can account for 
the time trend in each tier, grouping together places 
most similar in dispensing. 
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Observation 2: Dispensing Tiers Over Time 
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Drug: Opana ER 
Time: 2009q3 – 2016q4 
Sources: IQVIA 
N: 25,401 ZIP-quarters 
Analysis unit: 3-digit ZIP 
Stratification: Cumulative exposure tertile 
Source: Ji et al. 2017, Epidemiology, 10.1097/EDE.0000000000000579  

High, medium and low tier dispensing locations for a given drug 
have different shaped trajectories over time. 



Observation 3: Non-linearity 
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Drug: Opana ER 
Time: 2009q3 – 2016q4 
Exposure Source: IQVIA 
Outcome Sources: PC + SKIP + OTP 
N: 25,401 ZIP-quarters 

There is a Non-Linear Association Between Dispensing and Abuse 

Linear R2 = 0.085 = no linear association 

High abuse, moderate dispensing 

Low abuse, high dispensing 



A new method, Trend-in-Trend, is robust to 
confounding from competing interventions by 
looking at trends in smaller time units, while 

simultaneously accounting for dispensing tiers. 
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Prescription opioid abuse changes over time through prescribing. 
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Seeing the Unseen 
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Borrowing a well-established concept from economics (instrumental variables [IV]), we can 
calculate how much effect competing interventions might have on opioid abuse, even if we can’t 
directly quantify the interventions themselves.  
 
This is different from “adjusting” for known interventions in a model, which would explain away the 
observed variation. Instead, we are saying that competing interventions over time are important, 
and quantifying the influence they might be asserting. 

Ertefaie A et al. A tutorial on the use of instrumental variables in pharmacoepidemiology. PDS, 2017. doi:10.1002/pds.4158 



Extension to the linear model 
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Expanding to the linear model framework, we have our marginal mean 
μi defined below conditional on Zi (exposure), G (group/tier), and Xi 
which represents our unmeasured confounding at time t 
 
 
h()  is the logit link function so we can evaluate the model as  
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